Calculus One by Abdulaziz Al Ghannami, Quantq8.com **Chapter 1 Limits and Continuity** A set is a collection of elements. A subset is a set within a set. The Set of Natural Numbers $N = \{1, 2, 3, ...\}$ The Set of Integers $Z = \{-1, 0, 1, 2, 3, ...\}$ The Set of Rational Numbers $Q = \left\{ \frac{a}{b}, \text{ where a is in } Z \text{ and b is in } Z \text{ and } B \neq 0 \right\}$ eg. $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{0}{2}$; are in Q eg. $\frac{\sqrt{2}}{3}$, $\frac{\pi}{2}$; are not in Q The numbers not in Q are called irrational numbers. The Real Line Is the set of real numbers. It is a line whose points are either in Q or are irrational numbers. \mathbb{R} **Functions** Input f(x)Output Range R Domain f(1)x = 1eg. $f(x) = x^2$ $x = 1, 1^2 = 1$ $x = 2, 2^2 = 4$ x = -2, $(-2)^2 = 4$ $x = \sqrt{2}, (\sqrt{2})^2 = 2$ etc. For a function to be a real-valued function it must consist of the following: 1. A set D of real numbers called the Domain 2. A rule/mechanism that associates with every real number in D, exactly one, number y, in range R y is denoted as f(x), and called the value of the function of x. R is the range, and is the set of all values f(x) = y of the function. **Families of Functions** The Polynomials $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$ where $a_n \in \mathbb{R}$, $n \in \mathbb{N}$ if $a_n \neq 0$, then this is a polynomial of degree n, with coefficient a_0 , a_1 , ..., a_n Examples of poynomials, Constant function f(x) = 4f(x) = x - 1Linear function $f(x) = 2x^2$ Quadratic function $f(x) = x^2 - x + 1$ Quadratic function $f(x) = 3x^3 + 2x^2 - 7x + \sqrt{2}$ Cubic function **Power Functions** $f(x) = x^a, a \in \mathbb{R}$ It is important to be able to distinguish power functions from polynomial function. We can do so by asking a series of questions which will enlighten us on these differences: is $f(x) = x^2$ a polynomial? YES is $f(x) = x^{\frac{1}{2}}$ a polynomial? NO $g(x) = x^2$ polynomial & power function $k(x) = x^2 + 1$ only polynomial function $l(x) = 3x^2$ only polynomial function **Rational Functions** $f(x) = \frac{P(x)}{O(x)}$, where both P(x) and Q(x) are polynomials and $Q(x) \neq 0$ Examples of rational functions include, $f(x) = \frac{2x+3}{x^2 - 3x + 2}$ rational function $g(x) = \frac{x^2 - 4}{2x}$ $h(x) = \frac{1}{x}$ $i(x) = \frac{x^{\frac{1}{2}} + 1}{x^2}$ rational function rational function only composite function **Graphs** The graph of a function f is the set of all pairs (x, f(x)); we draw it in the x-y plane. y a pair of real numbers (a,b)b xa Graphs can be drawn by approximation. The more points we have, the better the approximation. This is done using the 'Numerical method'. eg. f(x) = x, numerical method: χ 0 1 eg. $f(x) = x^2$, this U-shaped curve is called a parabola this is 1:many and hence is not a graphing function χ The Vertical Line Test It is a test for seeing if something is a function or not. Draw a line at any point on the x-axis, if it touches the graph at more than one point it is not a graphing function. More formally, A curve in the x-y plane is the graph of the function if and only if no vertical line intersects the curve more than once. y y y To understand a graphing function we must understand a 1:1 function, and prove it is a 1:1 function. This will be proven/tested by the **Horizontal line test**. The Horizontal Line Test This test is only performed for a function. If a function passes this test it is called a 1:1 function and means it has an inverse. y $\rightarrow x$ What is the inverse of a function? It is defined as: If f is 1:1, then we can define another function as f^{-1} (inverse of f), s.t.: $f^{-1}(f(x)) = x$ Logarithms & Rules A logarithm is the reverse of taking a power. $log_b x$ is the unique inverse where $y \in \mathbb{R}$ s. t. $b^y = x$ eg. $f(x) = log_e x \equiv f(x) = lnx \implies f^{-1}(x) = e^x$ f(x) = lnx2.5 0 12.5 -12.5 -10 -7.5 -2.5 2.5 Since f(x) is 1:1 it has an inverse $f^{-1}(x)$. In the graph this is evident by either curves reflections in the y = x line. Important logarithmic results to remember: ln(0) = DNEln(1) = 0 $e^{lnx} = y$ $ln(e^x) = y$ Important logarithm rules to remember: $lnx = log_e x$ ln(ab) = lna + lnb $ln\left(\frac{a}{h}\right) = lna - lnb$ $ln(a^r) = rlna$ Important indices rules you should recall: $e^0 = 1$ $e^a \cdot e^b = e^{a+b}$ $\frac{e^a}{e^b} = e^{a-b}$ $\left(e^a\right)^r = e^{ar}$ **Exponential Function** $f(x) = a^x$, where a > 0eg. 2^{x} , 3^{x} , $\left(\frac{1}{2}\right)^{x}$, e^{x} If $x = \frac{q}{p}$ in the simplest form, $q,p \in Z$ then, $a^{\frac{q}{p}} = \left(\sqrt[p]{a}\right)^q$ **Trigonometric Functions** <u>Sine</u> y = sinx $D_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ $R_f = [-1, 1]$ **Cosine** y = cosx $D_f = [0, \; \pi]$ $R_f = [-1, 1]$ **Tangent** y = tanx $D_f = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ $R_f = (-\infty, \infty)$

Trigonometric Identities

Each quatrant indicates which trigonometric ratios

Important radian and degree conversions

Reciprocating the trigonometric functions

are positive

 $\frac{\pi}{3} = 60^{\circ}$

 $\frac{\pi}{4} = 45^{\circ}$

 $\frac{\pi}{6} = 30^{\circ}$

 $sin^2x + cos^2x \equiv 1$

 $cos\theta$

 $\frac{1}{2}$

 $1 + tan^2x \equiv sec^2x$

 $1 + \cot^2 x \equiv \csc^2 x$

 $cos(2x) \equiv cos^2x - sin^2x$

 $sin(2x) \equiv 2sin(x)cos(x)$

 $\equiv 1 - 2\sin^2 x$

 $sin(x \pm y) \equiv sin(x)cos(y) \pm cos(x)sin(y)$ $cos(x \pm y) \equiv cos(x)cos(y) \mp sin(x)sin(y)$

sin

tan

 $\frac{\pi}{2} = 90^{\circ}$

 $\pi = 180^{\circ}$

 $\frac{3\pi}{2} = 270^{\circ}$

 $2\pi = 360^{\circ}$

let,

f(x) = sinx g(x) = cosxh(x) = tanx

then,

 $sin\theta$

 $\frac{1}{2}$

All

cos

 $0,2\pi$

		Adjacent	Opposite (to the angle)
a	∞		$c \leq b$
a a	b b ——————————————————————————————————	$(a,b) = \{x \in \mathbb{R} : a < x\}$ $[a,b) = \{x \in \mathbb{R} : a \le x\}$	
а 	b •	$(a,b] = \{x \in \mathbb{R} : a < x$ $\mathbb{R} = (-\infty, \infty)$	≤ <i>b</i> }
a ————————————————————————————————————	a	$[a, \infty) = \{x \in \mathbb{R} : a \le x\}$ $(-\infty, a) = \{x \in \mathbb{R} : x \le x\}$	
a —	a	$(a,\infty)=\{x\in\mathbb{R}:x>a$	1}
laking new functions from f and g are functions:	old	$(-\infty, a) = \{x \in \mathbb{R} : x < 0\}$	a}
$f+g)(x) = f(x) + g(x)$ $f-g)(x) = f(x) - g(x)$ $f \cdot g)(x) = f(x) g(x)$ $x \in D_f \text{ and also } x \in D_g$ $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$	where $g(x) \neq 0$		
$f(x) = \frac{f(x)}{g(x)}$ $f(x) = x + 1$ $g(x) = \ln x$ $f(x) = x + 1 + \ln x$			
$f - g(x) = x + 1 - \ln x$ $f \cdot g(x) = (x + 1)(\ln x)$ $\frac{f}{g}(x) = \frac{x + 1}{\ln x}, \text{ for } x \in \mathbb{R}$	$D_{x+1}\cap D_{lnx},\ (0,\infty)$		
perations within functions	to make new ones:	. ÷ , o	
Addition	Subtraction Multiplication	Compos	e
omposition of functions			
$x \longrightarrow f$ he above is called,	f(x)	8	$g \circ f$ $g(f(x))$
	$(g \circ f)(x) =$ where, $x \in D_f$ $eg \ 1. \ f(x)$ $g(x) =$ $(f \circ g)(x) =$	$f(x) \in D_g$ $= \sin x$ x^2 $\sin(x^2)$	
	$(g \circ f)(x) =$ $eg \ 2. \ \mathbf{let} \ g(x)$ $D_g = [-1, 1], \ arcsi$ $\mathbf{let} \ f(x) = cosx, \ D_f$	$= \arcsin x$ 1, 1]	
alculating Limits (Algebra		os(arcsinx)	
F	How to calculate li		
if it is defined, that is your answer	if it is undefined,	did you get	
$\frac{0}{0}$	$\frac{non-2}{0}$		$, \infty - \infty, \frac{\infty}{\infty}$
Try: factoring, expanding common denominator, conjugates,trigonomet identities, 'special' limits involving trig. or 'a	$+\infty$, – or DNE	try: fact highest	are indeterminates, oring, divide by power in the nator, etc.
in general: $f(x) = a_0 + a_1 x + a_2 x^2 + a_1 x + a_2 x^2 + a_2$			
$\implies a_0 + a_1 x + a_2 x^2 + \dots$ g. $\lim_{x \to 1} \frac{2x+1}{x^2-1} = \frac{2 \cdot 1 + 1}{1^2-1}$ \therefore we write in this case,			
$\lim_{x \to 1^{+}} \frac{2x+1}{x^{2}-1} = \infty \implies \lim_{x \to 1^{-}} \frac{2x+1}{x^{2}-1} = -\infty \implies l$	imit from the left		
I. B. $for \frac{0}{0} \Longrightarrow cannot co$ he Algebra of limits	onclude $f(x) = a_0 + a_1 x + a_2 x + a_3 x + a_4 x + a_4 x + a_5 x +$	$a_{2}x^{2} + + a_{n}x^{n}$	
	$f(x) = ax^{2}$ $D = b^{2}$ $(D \text{ is the disc}$ $x_{1} = \frac{-b - b}{a}$	+ bx + c - 4ac riminant)	
	$x_2 = \frac{-b}{If}$	$-\frac{\sqrt{D}}{2a}$	
D	0 > 0 0 = 0 0 < 0 where $y = 0$	2 Distinct real roots Double real roots No real roots	
<i>y</i>	> x		
imits of Rational Function: $(x) = \frac{P(x)}{O(x)}, \text{ where } P(x) \in \mathbb{R}$			
Case 1 $\lim_{x \to x_0} g(x) = \frac{P(x)}{Q(x)}$ $\lim_{x \to x_0} g(x) = \frac{P(x)}{Q(x)}$	$\left(\frac{x_0}{x_0}\right) = number \ or \left(\frac{0}{numb}\right)$	$\frac{1}{per} = 0$	
Side note $A^{3} + B^{3} = (A^{2} - AB + B^{2})$ $A^{3} - B^{3} = (A - B)(A^{2} + A^{2})$	$\frac{2}{AB+B^2}$	ude, must find another m	ethod to evaluate
$(A + B)^3 = A^3 + 3A^2B + 3A$			
Seometrically:	/		
	<i>y x x x x x x x x x x</i>		
g. of limits	<i>></i> 1		
g. of limits		$\lim_{x \to 3^{+}} f(x) = 2$ $\lim_{x \to 3^{-}} f(x) = 2$	$\lim_{x \to 3} f(x) = 2$
23	$ \longrightarrow x $	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$	$\lim_{x \to 3} f(x) = 2$
when we talk about continuate a value isn't in the domaing there is a limit at 2, but	uity we are talking specifin, continuity does not ap	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain.	$\lim_{x \to 3} f(x) = 2$
When we talk about continuation of a value isn't in the domaing the there is a limit at 2, but	uity we are talking specifin, continuity does not ap no continuity at 2.	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain.	= 0
when we talk about continuation a value isn't in the domainment of the continuation of	uity we are talking specifin, continuity does not ap no continuity at 2.	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain. ply. $\lim_{x \to \infty} \frac{1}{x} = \frac{1}{x}$	= 0
when we talk about continuous a value isn't in the domainth there is a limit at 2, but a source of the continuous and the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the domainth there is a limit at 2, but a source of the continuous avalue isn't in the continuo	uity we are talking specifin, continuity does not ap no continuity at 2.	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain. ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$	= 0
When we talk about continuous a value isn't in the domains there is a limit at 2, but go of limits to infinity $y = y = y = y = y = y = y = y = y = y =$	uity we are talking specifin, continuity does not ap no continuity at 2.	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain. ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$	= 0
When we talk about continue $\frac{y}{2}$ a value isn't in the domainther is a limit at 2, but if $\frac{y}{2}$ and $\frac{y}{2}$ implies $\frac{y}{2}$ and $\frac{y}{2}$ implies $\frac{y}{2}$ and $\frac{y}{2}$ in	uity we are talking specifin, continuity does not apno continuity at 2. a limit is in these two cordinates always true:	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain. ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$	= 0
When we talk about continue a value isn't in the domainth there is a limit at 2, but if $\frac{2}{x}$ of limits to infinity $\frac{y}{x}$ of limits $\frac{z}{x} = 0$. We can conclude that this if $\frac{r}{x} = 0$, $r \in \mathbb{R}$ examples of solving an indexinal $\frac{z}{x} = 0$. The solution $\frac{z}{x} = 0$ is $\frac{z}{x} = 0$.	uity we are talking specifin, continuity does not apno continuity at 2. a limit is in these two cores always true: erminate form: not conclude (because it is ial over a polynomial (rational))	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain. ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$	
When we talk about continual value isn't in the domain there is a limit at 2, but if the area of the conclude at a limit at 2, but if the area of the	uity we are talking specifin, continuity does not apno continuity at 2. a limit is in these two cores always true: erminate form: not conclude (because it is ial over a polynomial (rational))	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ ically about the domain. ply. $D = \mathbb{R} - \{0\}$ inditions:	
When we talk about continuous a value isn't in the domains there is a limit at 2, but the distribution is a limit at 2, but there is a limit at 2, but the distribution is a	uity we are talking specifin, continuity does <u>not</u> ap no continuity at 2. a limit is in these two continuity at 2. a limit is in these two continuity at 2. x x x x x x x x	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ $\text{ideally about the domain.}$ $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$ inditions:	
when we talk about continuation a value isn't in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint there is a limit at 2, but in the domaint the domain	uity we are talking specifin, continuity does not approach approach approach and conclude (because it ial over a polynomial (ratification and function). $ \cos = cannot \ conclude $ it, and make it a ratio of the interval of the ratio and th	$\lim_{x \to 3^-} f(x) = 2$ \int $f(3) = DNE$ \int $f(3) = DNE$ \int	(multiply by $\frac{1}{x^n}$), n
When we talk about continual a value isn't in the domain there is a limit at 2, but if the is a limit at 2, but if there is a limit at 2, but if there is a limit at 2, but if there is a limit at 2, but if the is a limit at 2, but if there is a limit at 2, but if the is a limit at	uity we are talking specifin, continuity does not appropriate form: a limit is in these two continuity at 2. a limit is in these two continuity at a polynomial (ratification of the rational function). $ continuity at 2. $ a limit is in these two continuity at 2. $ continuity at 2. $ $ continuity a$	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ $\text{ically about the domain.}$ ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$ inditions: $\lim_{x \to \infty} \frac{(x^{2} + 3x) - x^{2}}{\sqrt{x^{2} + 3x} + x} = \frac{1}{x}$	(multiply by $\frac{1}{x^n}$), n
When we talk about continuous a value isn't in the domains there is a limit at 2, but if the domain at 2, and a limit at 2, a	uity we are talking specifin, continuity does not approach approach approach and conclude (because it ial over a polynomial (ratification and function). $ \cos = cannot \ conclude $ it, and make it a ratio of the interval of the ratio and th	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ $\text{ically about the domain.}$ ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$ inditions: $\lim_{x \to \infty} \frac{(x^{2} + 3x) - x^{2}}{\sqrt{x^{2} + 3x} + x} = \frac{1}{x}$	(multiply by $\frac{1}{x^n}$), n
When we talk about continue a value isn't in the domainthere is a limit at 2, but in the region of limits to infinity ou cannot conclude what $\frac{2}{100} = cannot conclude$ $\frac{2}{100} $	uity we are talking specifin, continuity does not approximate form: a limit is in these two continuity at 2. a limit is in these two continuity at a polynomial (ratification).	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ $\text{ically about the domain.}$ ply. $\lim_{x \to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$ inditions: $\lim_{x \to \infty} \frac{(x^{2} + 3x) - x^{2}}{\sqrt{x^{2} + 3x} + x} = \frac{1}{x}$	(multiply by $\frac{1}{x^n}$), n
When we talk about continuation a value isn't in the domaint there is a limit at 2, but in the isn't in the domaint there is a limit at 2, but in the isn't in the domaint there is a limit at 2, but in the isn't in the domaint there is a limit at 2, but in the isn't in the domaint there is a limit at 2, but in the isn't in the domaint in the init in th	uity we are talking specifin, continuity does <u>not</u> approach to conclude (because it it it is in these two conditions).	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ $\operatorname{lim}_{x \to \infty} \frac{1}{x}$ $\operatorname{lim}_{x \to \infty} \frac{1}{x}$ $\operatorname{lim}_{x \to \infty} \frac{1}{x} = 0$	(multiply by $\frac{1}{x^n}$), n
When we talk about continuity is a value isn't in the domain there is a limit at 2, but if the	uity we are talking specifin, continuity does not approximate form: a limit is in these two continuity at 2. a limit is in these two continuity at 2 in the rational function).	$\lim_{x\to 3^-} f(x) = 2$ $f(3) = DNE$ is all yabout the domain. ply. $\lim_{x\to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ and the form $\frac{a}{b}$. $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$ $\lim_{x\to \infty} \frac{(x^2 + 3x) - x^2}{\sqrt{x^2 + 3x} + x} = \frac{1}{x}$	(multiply by $\frac{1}{x^n}$), n
When we talk about continuous a value isn't in the domain there is a limit at 2, but in the region is a limit at 2, but	uity we are talking specifin, continuity does not approach and conclude (because it is always true: a limit is in these two continuity at 2. a limit is in these two continuity at a polynomial (rat the rational function). $ \cos = cannot \ conclude $ it, and make it a ratio of the interval of the inte	$\lim_{x\to 3^-} f(x) = 2$ $f(3) = DNE$ $\text{is ally about the domain.}$ ply. $\lim_{x\to \infty} \frac{1}{x} = D = \mathbb{R} - \{0\}$ $D = \mathbb{R} - \{0\}$ inditions: $\lim_{x\to \infty} \frac{a}{b}$ $\frac{1}{a} \cdot \sqrt{b}$ $\lim_{x\to \infty} \frac{a}{\sqrt{x^2 + 3x} + x} = \frac{1}{a}$ $\lim_{x\to \infty} \frac{a}{\sqrt{x^2 + 3x} + x} = \frac{1}{a}$ $\lim_{x\to \infty} \frac{a}{\sqrt{x^2 + 3x} + x} = \frac{1}{a}$ $\lim_{x\to \infty} \frac{a}{\sqrt{x^2 + 3x} + x} = \frac{1}{a}$ $\lim_{x\to \infty} \frac{a}{\sqrt{x^2 + 3x} + x} = \frac{1}{a}$	(multiply by $\frac{1}{x^n}$), n
When we talk about continuous a value isn't in the domain. There is a limit at 2, but it is a polynome in a limit at 2, but it is a polynome in at 2x + 3x - x = \income \frac{2x + 3}{5x - 1} = \frac{2x - 0}{x} = cannot conclude that this is a limit at 2x + 3x - x = \income \frac{2x + 3}{5x - 1} = \frac{2x - 0}{x} = cannot conclude that this is a limit at 2x + 3x - x = \income \frac{2x + 3x - 1}{x} = \frac{2x + 3x - x}{x^2} = 2x + 3x -	uity we are talking specifin, continuity does not approximate form: a limit is in these two continuity at 2. a limit is in these two continuity at a ratio of the rational function). $ \frac{1}{x^2 + 3x + x} = \frac{3}{x^2 + 3x + x} $ $ \frac{1}{x^2 + 3x + x} = \frac{3}{x^2 + 3x + x} $ $ \frac{3}{x^2 + x} = \frac{3}{x^2 + x} $ $ \frac{1}{x^2 + 3x + x} = \frac{3}{x^2 + x} $ Insider its biggest power. $ \frac{3}{x^2 + x^2} = \frac{3}{x^2 + x^2} $ $ \frac{3}{x^2 + x^2} = \frac{3}{x^2 + x^2} $ Insider its biggest power. $ \frac{3}{x^2 + x^2} = \frac{3}{x^2 + x^2} $ Insider its biggest power. $ \frac{3}{x^2 + x^2} = \frac{3}{x^2} $ Insider its biggest power. $ \frac{3}{x^2 + x^2} = \frac{3}{x^2} $ The proposition of the ratio of	$\lim_{x \to 3^{-}} f(x) = 2$ $f(3) = DNE$ $\text{lim}_{x \to \infty} \frac{1}{x}$ $\text{lim}_{x \to \infty} \frac{1}{x} = 1$ $\lim_{x \to \infty} \frac{1}{x} = 1$ $\lim_{x \to \infty} \frac{(x^{2} + 3x) - x^{2}}{\sqrt{x^{2} + 3x} + x} = 1$ $\lim_{x \to \infty} \frac{1}{x} = 1$	(multiply by $\frac{1}{x^n}$), n

A function f is continuous if it is continuous for each $x_0 \in D_f$. Visual examples of continuous and not continuous functions: χ **Not continuous Not continuous** x_0 **Not continuous Continuous**

 $f(x_0)$

 x_0

 $f(x_0)$ exists

:. Continuous

 $\lim_{x \to x_0} f(x)$ exists

 $\lim_{x \to x_0} f(x) = f(x_0)$

A differentiable function is continuous at all points in its domain. A continuous function does not need to be differentiable. eg. $f(x) = \frac{1}{x}$ f(0) is not defined it is continuous in its domain

f(0) is defined $\lim_{x \to 0} f(x) = DNE$ \therefore *Not continuous at x* = 0 f(x) is defined $\lim_{x \to 0} f(x) = exists$ $but \lim_{x \to 0} f(x) \neq f(0)$ \therefore *Not continuous at* x = 0-1A Note on Endpoints: only $\lim_{x \to a_1^-} f(x)$ only $\lim_{x \to a_0^+} f(x)$ exists exists a_0

If $x = a_1$ is an endpoint for the domain of f(x) then, $\lim_{x \to x_0} f(x)$ (in the definition) is replaced by the appropriate left or right limit. N.b "limit from the left" is denoted by a '+' and "limit from the right" is denoted by a '-Recall the identity: also remember that |of a function|is continuous everywhere **Defintion of Limits** Let f(x) be a function and $x_0 \in \mathbb{R}$, $s.t. x_0 \in D_f \text{ or } x_0 \notin D_f$ we say $\lim_{x \to x_0} f(x) = L$ If f(x) can be made arbitrarily close to L by showing x sufficiently close to (but not equal to) x_0 Recall, **Definition of Continuity** A function f(x) is said to be continuous at $x = x_0$, if: 1 - f(x) is defined as $x = x_0$; ie. $f(x_0)$ exists $2 - \lim_{x \to x_0} f(x) \text{ exists}$ $3 - \lim_{x \to x_0} f(x) = f(x_0) \text{ or } \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) \text{ or Endpoints (replacing def)}$ **Definition of Derivative**

> Slope of the tangent line to the graph of f(x) at the point (x, f(x))

∴ a **derivative** is the <u>instantaneous</u> rate of change of f at x (depicted as a tangent line to the graph of f(x)

if the point exists

The derivative is defined as a limit as such (this is referred to as 'the definition of a derivative'): $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ eg. Calculate the derivative of $f(x) = \sqrt{x}$, $x \ge using the definition,$ $=\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}$ $= \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$ $= \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})}$ $=\lim_{h\to 0}\frac{1}{\sqrt{x}\cdot\sqrt{x}}$ $=\lim_{h\to 0}\frac{1}{\sqrt{2x}},\ D_f(0,\infty)$ **The Intermediate Theory The General Case**

f(a)

Then for all y_0 inbetween f(a) & f(b), there exists $x_0 \in (a, b)$ such that $f(x_0) = y_0$

lf

• f(x) is continuous on [a, b]

• $f(a) \neq f(b)$

The Special Case

 χ

lf • f(x) is continuous on [a,b]· Have opposite signs **Then** there exists at least one c such that $c \in (a, b)$, f(c) = 0eg. $x^3 + 3x - 2 = 0$, this equation is hard to solve for, However there is a solution in (0, 1)For this, consider $f(x) = x^3 + 3x - 2$ on [0, 1]f(0) = -2 < 0f(1) = -2 > 0IVT say $\exists c \in (0,1)$ such that f(c) = 0, $c^3 + 3c - 2 = 0$ **Chapter 2 Differentiation Differentiation techniques** Imagine having to find out the derivative of a function by using the definition. Luckily we have a method to find the derivative of any function in general:

for a function $f(x) = x^n$, the derivative $f'(x) = nx^{n-1}$

N.b. The derivative of any constant function is zero.

· Chain rule: derivative of a compositve function

 $[f(g(x)]' = f'(g(x)) \cdot g'(x)$ Newtons notation

if we have f(x) and x changes from x_0 to $x_1 \longrightarrow \triangle x \longrightarrow (x_1 - 0)$

 $\frac{df(g(x))}{dy} \Longrightarrow let \ y = f(u) \ \& \ u = g(x) \ \therefore \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \ Liebinz \ notation$

Recall, $(f \circ g)(x) = f(g(x))$

Linear approximation & differentials

Linear aprroximation for f(x) at a

 $f(x) \approx f(a) + f'(a)(x - a)$

 $tan^{-1}(u)$

 $f(x) = c, c \in \mathbb{R}$ f'(x) = c' = 0

eg. g(x) = 3, g'(x) = 0No slope, which means the slope was equal to zero. Which is why the first derivative is equal to zero as it is the rate of change. **Differentiation rules:** · For any constant c, (cf(x))' = cf'(x)• $(f(x) \pm g(x))' = f'(x) \pm g'(x)$ · Product rule: $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ · Quotient rule: $g(x) \neq 0$, $\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$

 $\therefore f(x_1) \approx f(x_{0}) + f'(x_0)$ **Linearization** of f at aL(x) = f(a) + f'(a)(x - a) $\Delta y = f(x + \Delta x) - f(x)$ **Derivatives of General Exponential Functions** f(x)f'(x) a^x $a^{x}ln(a)$ $a^{f(x)} \cdot f'(x) \cdot ln(a)$ $a^{f(x)}$ <u>Derivatives of Logarithmic Functions</u> f(x)f'(x)lnx $log_a(x)$ $log_a(f(x))$

Recall this rule, $log_a x = \frac{lnx}{lna}$ We can use logarithms to simply differentiated complicated functions. **if** $y = y_1 \pm y_2 \pm y_3$ then $y' = y'_1 \pm y'_2 \pm y'_3$ Derivative of the inverse trigonometric functions f(u)f'(u) $sin^{-1}(u)$ $cos^{-1}(u)$

 $cot^{-1}(u)$ $sec^{-1}(u)$ $csc^{-1}(u)$ Minimum & Maximum values It is a critical number in a function f is a number c in the domain of f and that f'(c) = 0 & f'(c) = DNE

The absolute maximum and minimum (extrema values) in the interval [a, b]: • find the critical number *c* in the interval (*a*, *b*) • find *f*(*c*) • find f(b) & f(a) The smallest value is the minimum · The biggest value is the maximum Rolle's Theorem Let *f* be a function that satisfies the following:

1. f is continuous on [a, b]2. f is differentiable on (a, b)3. f(a) = f(b)Then there is a number c in (a, b) such that f'(c) = 0Things we want to show from an equation for f(x), that it has: • Exactly one solution = at most one solution a unique solution · Find a solution using IVT theorem

· Proof by contradictionn Rolle's Theorem Application: eg. prove that $x^3 + x - 3 = 0$ has exactly one real root. The steps intutional steps we will follow: Show that it has a root (Step 1)

 then, Show that that is the only real root (Step 2) Step 1- It has a root, by IVT: $f(x) = x^3 + x - 3$

f(0) = 0 + 0 - 3 = -3 < 0 $f(2) = 2^3 + 2 - 3 = 7 > 0$ it is a continuous polynomial, the results above show that it transition from negative to positive

therefore there will be at least one real root in the interval (-3,7)Step2- It has only one real root let it have 2 real roots, x = a, x = bf(a) = 0, f(b) = 0 real root $\therefore f(a) = f(b) = 0$ So to satisfy Rolle's Theorem: Continuous & Differentiable & f(a) = f(b) $\therefore f'(c) = 0$

 $f(x) = x^3 + x - 3$ $f'(x) = 3x^2 + 1 > 1$ (always positive) Since $f'(x) \neq 0$, our assumption is wrong given the equation has exactly one real root. Proof by contradiction calculation: 1. Show at least one real root exists using IVT 2. Assume two or more roots exist 3. Assuming in step 2 and another known fact (MVT/Rolle's Theorem) show that something else must occur 4. Show that the "something else" cannot occur, simplifying something, so the hypothesis is

wrong. Keep in mind these fact: • if c is a critical point for f(x) then f'(c) = 0• if *a* is an inflection point for f(x) then f''(a) = 0Mean Value Theorem (MVT) Let f be a function that satisfies the following hypothesis: • *f* is continuous on [*a*, *b*] • *f* is differentiable on (*a*, *b*) Then there is a number $c \in (a, b)$

such that $f'(c) = \frac{f(b) - f(a)}{b - a}$ **Sketching Graphs** • Relative/local maximum: f changes from \nearrow to \searrow

f is \nearrow at an interval if f'(x) > 0• Relative/local maximum: f changes from \searrow to \nearrow f is \searrow at an interval if f'(x) < 0• Critical points are points where the derivative f'(x) is either 0 or undefined (DNE) • Extrema (absolute max and min) occur at critical points, but not every critical poinnt is an extrema To determine Extrema we must do 2 things:

(c) Solve f'(x) = 0, if solutions are 0 or DNE then a critical point has been found 2. "Test" each critical point (found in step 1) to determine if it is a local max, local min or neither

1. find the critical points: (a) Compute f'(x)(b) Equate f'(x) to 0

f' < 0 & f'' < 0The 6 steps for how to sketch a graph 1. Find all the points at which the behaviour of the graph could change 2. Disregard points not in the D_f 3. Points in the D_f if they exist are critical points, if sols: f'(x) = 0 or f'(x) = DNE (for finding extrema; absolute max & min) 4. Inflection points: f''(x) = 0 or f''(x) = DNE5. Using the concavity diagram and the data just collected, piece all the curves above, being careful to indicate any horizontal (f'(x) = 0) or vertical (f'(x) = DNE) asymptotes 6. When necessary, add intercepts (x=0 y-intercept & y=0 x-intercept) and horizontal asympototes Hyperbolic functions $sinhx = \frac{1}{2}(e^x - e^{-x})$ $coshx = \frac{1}{2} \left(e^x + e^{-x} \right)$ $tanhx = \frac{sinhx}{coshx}$ $cothx = \frac{coshx}{sinhx}$ $sechx = \frac{1}{coshx}$ $cosechx = \frac{1}{sinhx}$ (sinhx)' = coshx(coshx)' = sinhx $(tanhx)' = sech^2x$ $(cothx)' = -csch^2x$ $(sechx)' = -sechx \cdot tanhx$ $(cschx)' = -cschx \cdot cothx$ $sinh^{-1}(x) = ln(x + \sqrt{x^2 + 1})$ $\cosh^{-1}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$ $tanh^{-1}(x) = \frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$ **Optimization** The Steps needed to solve an optimization problem:

Concavity Diagram

up

down

up

down

f' > 0 & f'' > 0

f' > 0 & f'' < 0

f' < 0 & f'' > 0

· Looking for the largest or smallest value (Extrema, absolute max & min) of a function subject to some kind of constraint • The constraint will be some condition. The condition will be described by an equation. Identify the quantity to be optimized and the constraint (must be true regardless of the solution) Always will have a minimum of 2 functions: a minimization/maximization function - constraint has a fixed value Rearrange the contraint and substitute it in the function · Differentiate and obtain the first derivative to find the absolute extrema · Use the second derivative to confrim if it is a max or min **Chapter 3 Integration** Antiderivatives/indefinite integrals, definite integrals/fundemental theorem of calculus Given a function f(x), an anti derivative for f(x) is another function F(x) which satisfies the following F'(x) = f(x)f(x) differentiation $\rightarrow f'(x)$ f(x) anti-differentiation $\rightarrow F'(x), F'(x) = f(x)$

All anti-derivatives are in the family of integrals **Notation** $\int f(x) \cdot dx$, it is the indefinite integral of f(x), it is the collection of all anti-derivatives of f(x), = F(x) + c, c is the constant of integration; where F(x) is any function satisfying, F(x) = f(x), $c \in \mathbb{R}$ Rule,

 $\int x^n \cdot dx = \frac{1}{n-1} \cdot x^{n+1} + c, \ n \neq -1$ exception: $x^{-1} = \frac{1}{x}$, $\int \frac{1}{x} \cdot dx = \ln|x| + c$

A table of Integrals that you should know $\int 1 \cdot dx = x + c$ $\int x^n \cdot dx = \frac{x^{n+1}}{n+1} + c$ $\int \frac{1}{x} \cdot dx = \ln|x| + c$ $\int e^x \cdot dx = e^x + c$ $\int b^x \cdot dx = \frac{b^x}{lab} + c$ $\int \sin x \cdot dx = -\cos x + c$ $\int \cos x \cdot dx = \sin x + c$ $\int \sec^2 x \cdot dx = \tan x + c$ $\int \csc^2 x \cdot dx = -\cot x + c$ $\int_{C} secxtanx \cdot dx = secx + c$ $\int cscxcotx \cdot dx = -cscx + c$ $\int tanx \cdot dx = \ln|secx| + c$ $\int \cot x \cdot dx = \ln|\sin x| + c$ $\int \sinh x \cdot dx = \cosh x + c$ $\int \cosh x \cdot dx = \sinh x + c$ $\int \operatorname{sech}^2 x \cdot dx = \tanh x + c$ $\int c s c h^2 x \cdot dx = -c o t h x + c$ $\int sechxtanhx \cdot dx = -sechx + c$ $\int cschxcothx \cdot dx = -csch + c$ $\int \frac{1}{\sqrt{1-x^2}} \cdot dx = \arcsin x + c$

 $\int \frac{1}{1+x^2} \cdot dx = \arctan x + c$ $\int \frac{1}{\sqrt{x^2 - 1}} \cdot dx = \operatorname{arcsec} x + c$ **Properties** 1. $\int_a^b (f(x) \pm g(x)) \cdot dx = \int_a^b f(x) \cdot dx \pm \int_a^b g(x) \cdot dx$ it is for larger sums also 2. For any constany c, $\int_{a}^{b} cf(x) \cdot dx = c \int_{a}^{b} f(x) \cdot dx$ 3. $\int_a^b f(x) \cdot dx = \int_a^c f(x) \cdot dx + \int_c^b f(x) \cdot dx, \ c \in \mathbb{R}$ Also, $\int_a^b f(x) \cdot dx = \int_c^b f(x) \cdot dx - \int_c^a f(x) \cdot dx$

 $= \int_{c}^{b} f(x) \cdot dx + \int_{a}^{c} f(x) \cdot dx$ N.b is true even if $c \notin [a, b]$ y b Integration by substitution The steps: let $\square = u$ usually choose the most complicated 2. $\frac{du}{dx} = \Box'$ $du = \Box' \cdot dx$ 3. $\int u \cdot du$ 4. Compute 5. Then resubstitute x for uThe definite Intergral of absolute value function

eg. $\int_{-2}^{3} |x| \cdot dx = \int_{-2}^{0} -x \cdot dx + \int_{0}^{3} x \cdot dx$ where x becomes 0 is where we break up the function, Why do we break it? As there are 2 different linear functions for $x \in (-\infty, 0)$ & for $[0, \infty)$. N.B. 1 in an odd function (odd number) f(-x) = -f(x) $\therefore \int_{-a}^{a} f(x) \cdot dx = 0$ eg. of odd functions: sinx, tanx, x^3 , x^5 , x^7 , ... N.B. 2 in even functions f(-x) = f(x) $\therefore \int_{-a}^{a} f(x) \cdot dx = 2 \int_{0}^{a} f(x) \cdot dx$ eg. of even functions: cosx, x^2 , x^4 , x^6 , ... • first let f(x) equal the function then test if even or odd then use ' :: ' deduction to solve the • if the integral has \int_{-a}^{a} always think of odd and even functions Area of a circle Form 1: $I = \int_{-c}^{c} \sqrt{c^2 - x^2} \cdot dx$ Deduction: $I = \frac{1}{2}\pi r^2$ $I = \frac{1}{2}\pi c^2, \ r = c$

Form 2: $I = \int_0^c \sqrt{c^2 - x^2} \cdot dx$ Deduction: $I = \frac{1}{4}\pi r^2$ $I = \frac{1}{4}\pi c^2, \ r = c$ So effectively to solve such integrals we can rely on the deductions instead of performing the lengthy integration. The Fundamental Theorem of Calculus Part 1 If a function f is a continuous function on [a, b], then the function is defined by: $g(x) = I = \int_a^x f(t) \cdot dt, \ a \le x \le b$ is continuous on [a, b] and differentiable on (a, b) and g'(x) = f(x)Rules for Part 1 1. if $f(x) = \int_a^b f(t) \cdot dt$ then f'(x) = 02. if $f(x) = \int_a^x f(t) \cdot dt$ then f'(x) = f(x)3. if $f(x) = \int_a^{g(x)} f(t) \cdot dt$ then $f'(x) = f(g(x)) \cdot g'(x)$

4. if $f(x) = \int_{g_1(x)}^{g_2(x)} f(t) \cdot dt$ then $f'(x) = [f(g_2(x)) \cdot g'_2(x)] - [f(g_1(x)) \cdot g'_1(x)]$ How to prove that: 1. f(x) is increasing, show f'(x) > 02. f(x) is decreasing, show f'(x) < 03. f(x) is constant, show f'(x) = 0Find local extrema: 1. find critical points, by finding f'(x)2. to get inflection point find f''(x) and equat to 0 How to show if a curve is concave up or concave down: Use the second derivative to show it, if f''(x) > 0 concave upwards if f''(x) < 0 concave downwards Chapter 4 Applications of Differentiation and Integration The First & Second Derivatives The meaning of the first derivative • The first derivative of the function f(x) is $\left(f'(x) \text{ or } \frac{df}{dx}\right)$ the slope of the tangent line to the function at the point x. It tells us whether a function is increasing or decreasing and by how much:

- if $\frac{df}{dx}(p) > 0$, then f(x) is an increasing function at x = p- if $\frac{df}{dx}(p) < 0$, then f(x) is an decreasing function at x = p- if $\frac{df}{dx}(p) = 0$, then x = p is called a critical point of f(x), and we do not know the behaviour of f(x) at x = p (this is why we may then use the second derivative) The meaning of the second derivative • It is the derivative of the derivative of that function, f''(x) or $\frac{d^2f}{dx^2}$ · The second derivative tells us if the first derivative is increasing or decreasing - if $\frac{d^2f}{dx^2}(p) > 0$ at x = p, then f(x) is concave up at x = p- if $\frac{d^2f}{dx^2}(p) < 0$ at x = p, then f(x) is concave down at x = p- if $\frac{d^2f}{dx^2}(p) = 0$ at x = p, then we do not know anything new about the behaviour of f(x)at x = pCritical points & the second derivative test

When x is a critical point of the function f(x), we do not learn anything new about the function at

• if $\frac{df}{dx}(p) = 0 \& \frac{d^2f}{dx^2}(p) = 0$, then we learn no new information about the behaviour of f(x)

• A function f(x) has an inflection point at x if the graph of the function goes from concave up

· It cannot tell us if the graph of a function has an inflection point; it can only tell us where it

• if $\frac{df}{dx}(p) = 0 \& \frac{d^2f}{dx^2}(p) > 0$, then f(x) has a local minimum at x = p

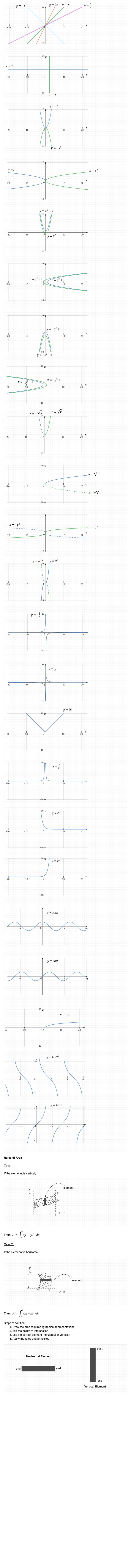
• if $\frac{df}{dx}(p) = 0 \& \frac{d^2f}{dx^2}(p) < 0$, then f(x) has a local maximum at x = p

An innflection poinnt can onnly happen where the second derivative is 0

that point; it could be:

 Increasing Decreasing

at the point x = p


to concave down or vice versa

might have an inflection point

Inflection points

Graphs

a local maximum - a local minimum

