Abdulaziz AI Ghannami www.ghannami.com

Electrical and Electro-Mechanical Systems

Preliminaries

- Current (i):

$$
\begin{gathered}
\quad i=\frac{d Q}{d t} \text { or } Q(t)=\int i \cdot d t \\
i: \text { current measued in Amperes ' } A \text { ' } \\
Q: \text { charge measured in Coulombs ' } C \text { ' }
\end{gathered}
$$

- Voltage (v): work per unit charge

$$
\begin{gathered}
v=i R\} \text { Ohm's law } \\
i=\frac{v_{s}}{R^{\prime}}
\end{gathered}
$$

where v_{s} is the voltage source in measured in Volts ' V '

- Circuit Elements

"Not a Source of Energy"
- Conservation of charge \Leftrightarrow Kirchoff's Current Law: Algebraic sum of the voltages around a closed loop or circuit must be zero.
- Sum of currents in a node = sum of currents out of a node
- Series Resistors $\Longrightarrow R_{e}=\sum_{i=1}^{n} R_{i}$
- Parallel Resistors $\Longrightarrow \frac{1}{R_{e}}=\sum_{i=1}^{n} \frac{1}{R_{i}}$

Capacitance (C)

A capacitor is designed to store charge. (PUT SYMBOL)

Capacitance $\Longrightarrow C \Longrightarrow$ measures of how much change can be stored for a given voltage difference across the element:

$$
v=\frac{1}{C} \int i \cdot d t=\frac{1}{C} \int_{0}^{t} i \cdot d t+\frac{Q_{0}}{C}
$$

where Q_{0} is the initial charge in a capcitor at $t=0$.

$$
i=C \cdot \frac{d v}{d t}
$$

Inductance (L)

A magnetic field (a flu) surroiunds a moving charfe or current.
Inductor $\Longrightarrow L \Longrightarrow$ (PUT SYMBOL) is a passive two-terminal electrical component that stores energy in a magnetic field when an electric current flows through it.

$$
\begin{gathered}
\phi=L i \Longrightarrow \phi=\int v \cdot d t \\
i=\frac{1}{L} \int v \cdot d t
\end{gathered}
$$

$\left.\therefore v=L \cdot \frac{d i}{d t}\right\}$ where L is measured in Henry $(H) \Longrightarrow(v \cdot s / A)$

Power \& Energy.

Power is stored/dissipated by an electrical element is: $P=i v$
E in capacitor: $E=\int P \cdot d t=\int i v \cdot d t=\int\left(C \cdot \frac{d v}{d t}\right) v \cdot d t=c \int v d v=\frac{1}{2} C v^{2}$
E in inductor: $E=\int P \cdot d t=\int i v \cdot d t=\int i\left(L \cdot \frac{d i}{d t}\right) \cdot d t=L \int i d i=\frac{1}{2} L i^{2}$
P in resistor: $P=R i^{2}=\frac{v^{2}}{R}$

Electromechanical Systems

They are systems that have electrical and mechanical parts.

$$
\begin{gathered}
\text { emf } \Longrightarrow v_{b}=K_{b} \omega \text { \} voltage in armature } \\
\left.T=K_{T} i_{a}\right\} \text { torque in armature } \\
\text { Usually the case is } K_{b}=K_{T}
\end{gathered}
$$

where, v_{b} voltage in armature, K_{b} is motion bbacked emf \& K_{T} motion torque

